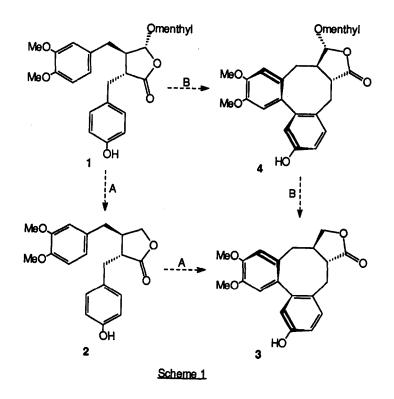


0957-4166(94)E0037-B

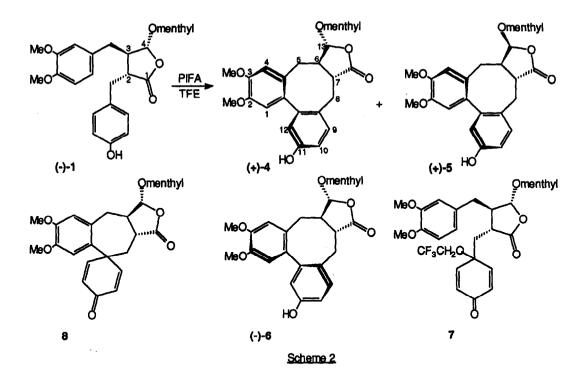
Asymmetric Syntheses of Isostegane Derivatives using Trivalent Iodine Reagents

Andrew Pelter,* Robert S. Ward* and Atef Abd-el-Ghani,

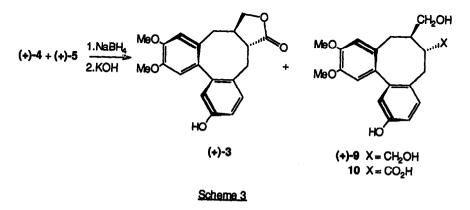

Chemistry Department, University of Wales, Swansea, Singleton Park, Swansea SA2 8PP, UK.

Abstract: Two asymmetric syntheses of the isostegane derivative (+)-7 are reported, both involving oxidation of a homochiral 2,3-dibenzylbutyrolactone with phenyliodonium bis(trifluoroacetate). Of particular interest is the fact that the oxidative cyclisation leading to the biaryl link can be carried out directly on a precursor containing a hemiacetal functional group.

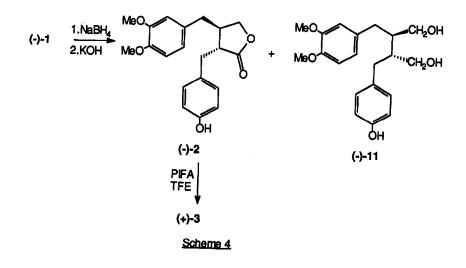
We have previously shown that phenyliodonium diacetate (PIDA) and phenyliodonium bis(trifluoroacetate) (PIFA) can be used to bring about two electron oxidation of phenols leading to quinone-monoketals and cyclohexa-2,5-dienones.^{1,2} We have also shown that in the absence of an external nucleophile these reagents can be used to bring about intramolecular oxidative coupling leading, in the case of 2,3-dibenzylbutyrolactones, to spirodienones and dibenzocyclooctadiene lignans.³ We have now adapted these reactions to provide an asymmetric synthesis of such compounds by starting with the homochiral dibenzylbutyrolactone (-)-1.


We envisaged two possible routes from 1 to compounds of the dibenzocyclooctadiene series (Scheme 1). The first (route A) would involve removing the menthyloxy group from 1 to give the homochiral dibenzylbutyrolactone (2). We have previously shown that treatment of *racemic* 2 with PIFA gives the isostegane derivative $3.^3$ The second route (route B) would involve treating 1 directly with PIFA which would be expected to give the menthyloxy substituted dibenzocyclooctadiene 4. Removal of the menthyloxy substituent from 4 would then give the parent dibenzocyclooctadiene 3 (or a stereoisomer).

The dibenzylbutyrolactone (-)-1, $[\alpha]_D - 145.8$ (c = 0.402, CHCl₃) was prepared using the tandem conjugate addition methodology developed in these laboratories⁴ and will be described in a full paper. Treatment of (-)-1 with PIFA in trifluoroethanol (TFE) for 24 hours gave a mixture of products which were purified by chromatography to give the isostegane derivatives (+)-4, $[\alpha]_D + 186.9$ (c = 0.312, CHCl₃) and (+)-5, $[\alpha]_D + 84.3$ (c = 0.325, CHCl₃) in 44% combined yield along with minor amounts (5% and 2% respectively) of the stegane isomer (-)-6, $[\alpha]_D - 136.1$ (c = 1.00, CHCl₃) and the trifluoroethoxy derivative 7. The spirodienone intermediate 8 was not isolated but h.p.l.c. analysis indicated that after $\frac{1}{2}$ hour this was the major product formed (Scheme 2).



The structures of (+)-4, (+)-5 and (-)-6 were based on an analysis of their ¹H and ¹³C n.m.r. spectra and in particular upon comparison with the spectra of similar racemic compounds lacking only the menthyloxy substituent.^{3,4} Thus the isostegane derivatives (+)-4 and (+)-5 showed characteristic signals in their ¹³C n.m.r. spectra at 46.5 and 50.5, and 47.6 and 50.8 p.p.m., respectively, due to C-6 and C-7, while compound (-)-6 had corresponding signals at 41.9 and 47.5 p.p.m. characteristic of the stegane series.^{5,6} That 4 and 5 only differed in their configuration at C-13 was evident from their ¹H n.m.r. spectra, which differed only in that they contained doublets at $\delta 5.2$ (J = 4.7) and 5.5 (J = 8.2) respectively.


It is assumed that epimerisation at C-13 is brought about by trifluoroacetic acid formed during the reaction. It is of interest to note that both (+)-4 and (+)-5 arise from an aryl migration from the spirodienone 8, in line with our previous experience using related compounds.³

Treatment of a mixture of (+)-4 and (+)-5 with NaBH₄ and KOH⁴ gave as a major product (+)-3 (37%), $[\alpha]_D$ + 108.8 (c = 0.25, CHCl₃) in which the menthyloxy group has been removed, along with smaller amounts of the diol (+)-9 (28%) $[\alpha]_D$ + 63.2 (c = 0.25, EtOH) and the hydroxy acid 10 (22%). When compound 10 was left in a dessicator over P₂O₅ it was slowly and quantitatively transformed into the lactone (+)-3 (Scheme 3). Thus the overall yield of (+)-3 from 4 and 5 was 59%. The structure of (+)-3 was firmly established by comparison of its ¹H and ¹³C n.m.r. spectra with those of the corresponding racemic compound.³

Finally, treatment of the dibenzylbutyrolactone 1 with NaBH₄ and KOH, gave as the major product (-)-2, $[\alpha]_D$ - 29.5 (c = 0.27, CHCl₃) (43%) along with 11% of the diol (+)-11, $[\alpha]_D$ - 32.1 (c = 0.14, CHCl₃). Treatment of (-)-2 with PIFA in TFE gave once again the isostegane (+)-3, identified by h.p.l.c. comparison with the sample prepared from (+)-4 and (+)-5 (Scheme 4).

Acknowledgements. We are grateful to Dr. O. W. Howarth (SERC NMR Service, University of Warwick), for high field NMR spectra and NOE data.

References.

- 1. A. Pelter and S. Elgendy, Tetrahedron Lett., 1988, 29, 677.
- 2. A. Pelter and S. Elgendy, J. Chem. Soc., Perkin Trans 1, 1993, 1891.
- 3. A. Pelter, R. S. Ward and A. Abd-el-Ghani, ibid, 1992, 2249.
- 4. A. Pelter, R. S. Ward, D. M. Jones and P. Maddocks, ibid, 1993, 2621 and 2631.
- 5. M. Taafront, F. Rouessac and J. P. Robin, Tetrahedron Lett., 1983, 24, 2983.
- 6. R. P. Hicks and A. T. Sneden, ibid, 1983, 24, 2987.

(Received in UK 14 January 1994)